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Abstract — A dielectric pillbox resonator placed on a dielectric substrate
is analyzed by a new method, the approximate mode matching method, in
which the cross section of such a resonator is subdivided into several
sub-sections having a simple geometry of the boundaries, i.e., dielectric
slab radial waveguides, and the continuity condition of fields between
subsections is treated in the least-squares sense.

The resonant frequencies and the intrinsic Q values due to the leakage
loss through the dielectric substrate calculated by this method are pre-
sented together with experimental results obtained in the 50-GHz region.

As aresult, it is found that the experimental results for both the resonant
frequencies and the Q values agree better with our calculated ones than
with the results by other approximate method, and so it will be concluded
that the analytical method presented here is almost enough to discuss
precisely the resonant characteristics of a dielectric pillbox resonator.

I. INTRODUCTION

IELECTRIC pillbox resonators have found practical

applications, particularly in connection with the areas
of both microwave and millimeter-wave circuits [1]1-[7]. In
such spectral regions, a diclectric pillbox is customarily
installed in a metal waveguide or on a metallic ground
plane, and their analyses have been performed by using
several approximate methods, such as a magnetic wall
model [7]-{10], a variational model [11], a dielectric wave-
guide model [12], and their mixed model [13], [14]. When
this kind of resonator is employed in the short millimeter-
wave region, a dielectric pillbox may be placed on a
dielectric substrate to release a resonator from the inherent
loss of metal. As expected easily from the existence of a
dielectric substrate, the leakage of resonant energy occurs
in the form of a surface wave which propagates away from
the pillbox through the substrate. This situation will make
it impossible to use most of the conventional approximate
methods to calculate both the resonant frequency and the
intrinsic Q value due to the leakage loss.

So far as we know, the method reported by Marcatili
[15] may be applicable to such a resonator after modifying
the region made of only substrate into the homogeneous
medium by means of the effective dielectric constant (EDC)
method [16]. Marcatili’s method is based on the approxi-
mate treatments of a dielectric rectangular waveguide ne-
glecting the weakened fields in the so-called shaded area
[17] and the Q value due to the leakage loss is calculated in
relation to its bending loss. Thus, for resonators less con-
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fining the fields in the dielectric pillbox, this method may
give rise to large errors in calculation of the resonant
characteristics. The purpose of this paper lies in the follow-
ing two: one is to present a new approximate method
which makes it easy to calculate precisely the O value as
well as the resonant frequency for any dielectric pillbox
resonator with a dielectric substrate, and the other is to
demonstrate both the validity and the accuracy of our
analysis by comparing with many resulis obtained by the
careful and precise experiments in the 50-GHz region.
Although the fields in the present analysis are approxi-
mated by neglecting the radiation fields with a continuous
spectrum, the results obtained here prove that our analyti-
cal method gives reasonable and practical solutions for the
resonant characteristics of dielectric pillbox resonators.

II. ANALYSIS

Fig. 1 shows the geometry of a dielectric pillbox resona-
tor placed on a dielectric substrate. The radius of the
pillbox is R and its refractive index n, is related to the
indices n,, n,, and n, of other regions by the condition
that n, > n, > n, > n, (In this paper, the refractive index is
used instead of the relative permittivity.) Although all
dielectric materials involved here are considered to be
isotropic and lossless, they are not the essential restriction
for our analysis. As expected, the resonant modes in such a
resonator are hybrid in the rigorous sense. Referring to
[18], their fields can be expressed by using both TE and
TM waves with respect to the z direction and the resonant
modes may be classified into the following two types. One
type, which we call the HE mode hereafter, has the domi-
nant contribution of the TE wave, while the other, the EH
mode, has the dominant contribution of the TM wave.
Although our attention in the following sections will be
paid to the HE mode, the analytical procedure can be
applied without distinction of the modal type.

The major difficulty in the analysis of this type of
dielectric resonators lies in treating the irregular boundary
of the structure which does not coincide with a separable
geometry. Then let us subdivide the resonator into two
constituent regions or building blocks, i.e., regions I and II,
on the ¢z cylindrical plane at r = R, and consider sep-
arately each of those regions as if they are slab radial
waveguides [18] having four and three dielectric layers,
respectively. We assume here that all the field components

0018-9480,/82 /1100-1952300.75 ©1982 IEEE



TSUJI et al.: DIELECTRIC RESONATORS

No

PR
i Regionl | Regionl
z |
Mo
n |y
17] c itz
N3 E r

Fig. 1. Dielectric pillbox resonator on a dielectric substrate and the
cylindrical coordinate syster.

can be expanded in terms of the TE and TM propagating
surface wave modes of the dielectric slab radial waveguide
in each region, neglecting the radiation waves with a con-
tinuous spectrum. Then the fields of the resonator can be
expressed by using the scalar potential functions, ¢, and ¢,
(i =1, 1) as follows:

Eri——‘]weonjz Jdrdz .—78—(])—
0y, a
Eym— e Sh
Jwegn;r do 9z or
1 9? -
E = — + n?k}
T jwegn? ( azr 0)%
_13, 1 9,
T r de | jwp, drdz
Y, 1%,
Hy=- or * Jjwuer 39 9z

i +n}k§)¢, (1)
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= Jwpg ( 9z

where
¢, = coqu)ZAmiEf(pmir)gmz (Z)ejwt

G, = 5invQY A, F (5t & (2)e™  (i=L1D). (2)

In these expressions, the upper bar is put on all quantities
related to the TM wave and k is the wave number in the
free space. 4,,, and A4,,, are modal expansion coefficients to
be determined, and the function of the radial coordinate F,

is given by
J,(u),

F(u)= {HV(Z)(U),

where J, and H® are the first kind of the Bessel function
and the second kind of the Hankel function of the »th
order, respectively, and » must be an integer. The p,,, and

for region 1

(3)

for region II,
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P,,, arec wavenumbers in the radial direction and g,,,(z) and
Z,.,(2) the modal functions of the mth TE and TM modes
in the slab radial waveguide. For example, g,(z) and
g,,n(z) are given as

sin( B, t, + 0,,;) e cmErN ¢+, <2

sin{8,;(z—1,)+6,,), L<z<t+1,

ng(Z) = Sinoml -
- sinh (8, ;z + ,
sinh (8,17, +£,,1) (B2 + &)
0<zgy,
sinf_.sinh
- ml ng ey'"‘z, zg 0 (4)
smh (6m1t2 + 'SmI)
sin(x,,f, + 0,1)e 1 (z—1,), t,<z
sin(k,;z+6,5), 0<z<t,
Emul ( Z) = " "
sinf,,ye?=1%, z<0
(5)
with the conservation relations of wavenumbers:
w\ o, 2
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where c is the velocity of light in the free space. The 8,

&, and 8,5, are constants that locate the field maxima in
regions I and II.

The g,,:(z) and g,,;(2) for the TM mode can be given
by the same expressions as those in (4), (5), and (6) if
putting the upper bar on the quantities related to the TM
mode, and so they are omitted in this paper. Here, the
boundary conditions on the r~¢ plane at z=0, ¢, and ¢,
define the wavenumbers in the z direction through the
following eigenvalue equations:
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for TM waves, where

Mo =No/ N2>

(©)

It is obvious that the characteristic angular resonant
frequency @ is determined by the remaining boundary
condition on the z—¢ cylindrical plane at r = R. In other
words, the simultaneous continuity conditions rX(E; —
Eq) = 0 and r X (H; —Hy) = 0 have to be solved, where r is
the unit vector to the radial direction. However, this type
of boundary conditions is never satisfied by the approxi-
mating fields employed here, so let us fit the fields to these
boundary conditions in the sense of least-squares [19]. For
this purpose, the mean-squares error E is introduced in the
boundary condition defined by the following equation:

2q £
E=/(; f_m{|"x([E1_|E11)|f=R

+ Z (W, —Hy)2_ g} Rdzdo

1

m=n/n,, n3=n3/n,.

(10)

where Z,, = p, /n’%, is the intrinsic impedance of medium
n,. After substituting (1)~(6) into (10) and performing the
integrations, the error E can be expressed as follows:
E= Z Z Z E{AmtA;kn’z’Pmm’u’(w)
(=L =11 m m
+ AmlA’:n’t’Qmm’u’(w)
+ A’:ntA‘_m’i’ :knm’it’(w) + A_mi/i—;kn’t’Rmm’ti'(w)> (1 1)

where the symbol * denotes the complex conjugate and P,
Q, and R are the functions of only the angular frequency
w, of which explicit but tedious forms can be found in [20].
The characteristic angular resonant frequency £ will then
be obtained by means of the Ritz—Galerkin variational
approach to this E. So, we minimize E with respect to the
unknown variables, that is, the modal expansion coeffi-
cients and the angular frequency w, and obtain the £ by
the same procedure described in [21].

As a result, the characteristic angular resonant frequency
for a mode is found as the complex quantity

(12)
where both «, and «, must be positive for the so-called
damped free oscillation because of the leakage field ex-
pressed by the second kind of the Hankel function. There-
fore, the resonant frequency f, and the intrinsic Q value Q,
can be calculated from & as follows:

fo=19/27, Q,=19|/20,.

Q=w, + jo,

(13)

III. NUMERICAL RESULTS

In the spectral range from the short millimeter to the
submillimeter waves, most of the solid dielectric materials
show a considerable absorption loss and only a few non-
polar polymers, e.g., polyethylene, show somewhat low
absorptions. However, all of these polymers have almost
the same low refractive indices (around 1.5), so that it will
be necessary to construct a resonator by using the same
dielectric material for both pillbox and substrate. In such a
case, the field confinement in the pillbox becomes weak in
general, and for obtaining the high Q value, it is necessary
that such a resonator functions with a edge-guided reso-
nant mode which can exist in the pillbox with a relatively
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large radius R compared to the wavelength, that is, in a
higher order mode in the ¢ direction having a large ».
Thus, in numerical calculations, the pillbox resonator is
considered which consists of the polyethylene (n, =n, =
1.51)! and the air (n, = n, =1.0) with a large R.

In the following section, the scaled experiments in the
50-GHz region will be performed in order to confirm the
accuracy of our analytical approach, so the numerical
results are also compared in this frequency region, where
the thickness of the pillbox and the substrate are assumed
to be ¢, =2.0 mm and #, =1.0 mm, respectively. For this
structure, the slab radial waveguide with thickness ¢, (re-
gion II) can support only the fundamental TE and TM
modes indicated with m =1 in (5), so that resonant modes
will be designated as HE, , (EH,,,,) where the subindices
p and q represent the number of extrema of the E,; (H,;)
component in the z and r directions in the region I,
respectively.

The typical results of the resonant frequency f, and the
intrinsic Q value Q, due to the leakage loss are shown in
Table I for the HE,|; mode (» = 50) and also the TE,-like
mode (»=50) which is a rough approximation for the
HE |, mode neglecting the contribution of the TM wave in
(1). Also, this table compares with the results by Marcatili’s
approximate method supported by the EDC method, where
the resonant mode will be designated as Hj, mode. We can
find that in case of R =40 mm, the resonant frequency of
the TE,,-like mode is higher than that of the HE,, mode
by about +0.18 percent (90 MHz), while Marcatili’s one is
much higher by about +0.42 percent (200 MHz). Such a
tendency is obviously seen in all values of R. Moreover, we
will observe in the following section that the measured
results show a fairly good agreement with our results of the
HE |, mode. Considering that the difference in the resonant
frequency mentioned above is significant when devising,
for instance, a frequency diplexer, one should be careful in
using Marcatili’s method even for estimating the resonant
frequency.

On the other hand, the difference between our results
(HE, ) and Marcatili’s ones (Hf,) for the intrinsic Q value
is more remarkable than that for the resonant frequency.
Again, the later experiments will show a significant dis-
agreement with the results of Marcatili’s approach. The
large error included in his method may be mainly caused
by the following two rough approximations. One of them is
the assumption of the existence of the so-called shaded
area [17] in case of good confinement of the fields in a
pillbox and the other is the introduction of Watson’s
approximation [22] to J,(u) and H® (u) assuming »2/(u?
—»?) <1, where u, is the real part of u. In the resonator
considered here, the confinement of the fields is loose in
both the z and the r directions and also »2/(u? — »?) is
about 0.2 ~ 0.3. Therefore, it may be concluded that
Marecatili’s approach no longer gives any reliable results for
the resonators having the structure discussed here. In con-
trast to this, our method based on the mode-matching
procedure is free from the above-mentioned approxima-
tions which may be effective only in the optical region, and

"Measured value for the polyethylene used mn our experiments.
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TABLEI
COMPARISON OF RESONANT FREQUENCIES AND INTRINSIC @
VALUES CALCULATED BY THE VARIOUS APPROXIMATE METHODS

Radws HEn mode | TEu like modeJ‘ﬁarcctilu's Method|
R |Resormant|Intrinsic JResonant |Intrinsk QResonant|intrinsic @

(mm) [TERENY Qo [EAENY Qo RNy 0o
35 5395 179 5405 179 54.21 136
40 47 94 241 4803 | 238 48 14 167
45 4319 296 4324 . 292 | 4340 184
50 3941 | 308 3845 302 3959 187
55 3630 297 3633 293 36 45 179
60 | 3368 | 273 [3370 . 271 13382 | 163
65 | 3145 | 246 [ 3146 | 243 [ 3157 [ 145

may precisely calculate the resonant characteristics for any
structure of a resonator in the short millimeter-wave re-
gion. This will be successfully confirmed through the ex-
periments in the following section.

Finally, the calculated results shown in Table I are
summarized in Fig. 2(a) and (b), which also exhibits the
results of HE,,, with » = 75. In this figure, the intrinsic Q
value has the maximum value at a definite value of R. The
degree of field concentration in the pillbox will explain
physically this interesting phenomenon. Approximating the
HE,; mode by the TE,,-like mode, one can calculate the
effective indices of refraction n g, for the region I and n gy
for the region II from the ratio p,;/k, and p,;/kg,
respectively. It is easily shown that the larger the ratio
Reg1/ Mg Decomes, the more the field is confined in the
pillbox, and the Q, value will increase monotonically.
However, the present case considers the HE,, mode with
fixed » (=50), and its resonant frequency varies as a
function of R as shown in Fig. 2(a), so that the ratio
Regr/ Mg &lso varies with R as shown in Fig. 3. The Q,
value will then vary according to this curve, which explains
well the result of Fig. 2(b).

IV. EXPERIMENTS

A. Experimental Setup

The experimental setup in the 50 GHz is shown sche-
matically in Fig. 4, where the construction of the pillbox
resonator tested is the same as that described in Section
IIL. In this setup, the polyethylene plate of a one-by-one
meter in size is used as a substrate and its outer edges are
terminated with an absorber (Eccosorb) so that the mea-
surements do not suffer the influence of the reflection of
the leaky wave propagating through the substrate toward
the outside of a pillbox. The millimeter-wave power from
the klystron is launched into a polyethylene rib waveguide
having the dimensions shown in the inset of Fig. 4. The
pillbox is coupled with this waveguide through a suitable
coupling gap D. In this arrangement, the coupling occurs
unidirectionally if the output end of the rib waveguide is
terminated with a matched load, and brings on the reso-
nance of traveling wave type. Thus, the resonant character-
istics can be obtained by measuring the ratio of the output
power of the rib waveguide with a pillbox to that without
it. On the other hand, if the rib waveguide is terminated
with a short circuit, the coupling with the pillbox occurs
bidirectionally, and causes a standing-wave type resonance
of which the standing-wave pattern . along the cir-
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cumference of the pillbox can be utilized to identify the
resonant order » of a mode.
B. Experimental Results

Launching a wave polarized parallel to the x axis (see
Fig. 4), the rib waveguide propagates the TE-like mode
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which is indeed the hybrid mode, but is polarized predomi-
nantly in the x direction, so that the resonance of HE
modes can be expected in the pillbox. Fig. 5 shows the
typical resonant characteristics for such a case, where
R=40.7 mm and D=3.6 mm are chosen. It is clearly
shown in this figure that there are three resonant points
indicated by D, @), and ) corresponding to the mea-
sured resonant frequencies of f, = 46.44, 47.23, and 48.01
GHz, respectively. To confirm the resonant order » at each
resonant point, the standing-wave patterns are then mea-
sured by means of the electric field probe [23]. The results
are shown in Fig. 6, and it may be concluded from this
figure that the resonant orders at the resonant points (D,
@), and @) are v =49, 50, and 51, respectively.

On the other hand, the theoretical resonant frequencies
of the HE,, mode with » =49, 50, and 51 are calculated as
fo =46.43, 47.21, and 48.03 GHz, respectively. These fre-
quencies, indicated by the mark (1) on the abscissa of Fig.
5, are in fairly good agreement with the observed frequen-
cies at the resonant points (D, @), and (), respectively.
Moreover, the next higher order mode is the HE,, mode,
and its resonant frequency is found to be, for instance, 51.3
GHz for » = 50 which is far from the observed frequency at
the resonant point (2) by about 4 GHz. From these
discussions, we may conclude that the resonant modes
observed at the points (D, @, and @ are the HE,; mode
with » = 49, 50, and 51, respectively.

Fig. 7 summarizes the measured resonant frequencies of
the HE,, mode for other R-values. The solid lines indicate
the theoretical values calculated by the present method,
while the dashed line indicates those by Marcatili’s method
for »=150." As seen from this figure, our results show a
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satisfactory agreement with experimental ones, but the
dashed line is different from them by about 200 MHz in
the 50-GHz region.

On the other hand, Fig. 8 shows the comparison between
the measured and theoretical intrinsic Q values for v = 49,
50, and 51. The solid lines show our theoretical values,
while the dashed lines show the results by Marcatili’s
method. In our experiments, the intrinsic Q value is ob-
tained from the best-fitted Lorentzian for the measured
resonant curve by assuming that the coupling between the
pillbox and the rib waveguide is small enough and the
adjacent resonances interfere litile with each other as ob-
served in Fig. 5. Note here that the tané of a polyethylene
is of the order of 107* in the 50-GHz region, so that we
may accept that the measured Q values are mainly due to
the leakage loss through the dielectric substrate. It is obvi-
ous that the measured Q, values have the tendency to agree
well with our results, but they do not change clearly among
the adjacent resonant modes, so that it is hard to under-
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stand a definite variation of Q, to ». The Q, values
measured for the HE,; mode with other resonant orders »
are shown in Fig. 9. All of these pillboxes are designed so
as to have the same resonant frequency f, = 46.8 GHz and
also the theoretical values obtained at discrete points are
linked one another by the curves for convenience sake. It is
confirmed clearly from Figs. 8 and 9 that the measured
intrinsic Q values agree better with our theoretical ones
than with Marcatili’s ones, but are slightly higher than
ours. This difference may be caused mainly by a poor
approximation for the fields of a resonator. Nevertheless,
the experimental measurements in this section will con-
clude that the analytical method presented here is almost
enough in practice to calculate the intrinsic Q value as well
as the resonant frequency of the pillbox resonator with the
dielectric substrate.

V. CONCLUSION

The analytical method for dielectric pillbox resonators
described here is based on the mode-matching technique in
which the approximate fields satisfy the boundary condi-
tions in the least-square sense. Although the fields are
roughly approximated in the present analysis, the approach
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can be applied to any kind of dielectric pillbox resonators
without unpermissible approximations which sometimes
appear in the published methods. The calculated results
sufficiently explain the experimental results of both the
resonant frequency and the intrinsic Q value due to the
leakage loss through the dielectric substrate. The present
analysis is a straightforward and effective method for
investigating the resonant characteristics of a dielectric
pillbox resonator.
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Uniform Asymptotic Technique for
Analyzing Wave Propagation in
Inhomogeneous Slab
Waveguides

HIROYOSHI IKUNO anp AKIRA YATA

 Abstract —The guided modes of inhomogeneous dielectric slab wave-
guides are analyzed by a uniform asymptotic technique based on the related
equation method. This technique gives highly accurate solutions in the
sense of asymptotic expansion. The algorithm for calculating the guided
modes of slab waveguides with an even polynomial refractive-index medium
is presented. As an example, we calculate the third-order approximate
solutions for the guided modes in an analytic form. The results show that
the WKB solutions for higher order modes are more accurate than for the
lower order modes and the correction to the WKB solutions is significant
for the lower order modes. The numerical result for eigenvalues and modal
fields confirms that the third-order asymptotic solution is accurate for all
the guided modes of the near-parabolic profile waveguides and for higher
order modes in the case of the quasi-Gaussian profile.

Manuscript received March 4, 1982; revised April 28, 1982.
The authors are with the Department of Information Engineering,
Kumamoto University, Kumamoto 860, Japan.

I. INTRODUCTION

T ECENT ADVANCES of fabrication technology of
optical integrated circuits produce optical channel
waveguides and directional couplers with a great variety of
inhomogeneous media including those with a Gaussian
distribution. A number of design theories have been pre-
sented to evaluate the propagation characteristics of such
inhomogeneous slab waveguides [ 1]-[4]. Although the WKB
method is useful for analyzing these waveguides, it fails in
the case of relatively strong inhomogeneity [4]. Consider-
able efforts have been made to overcome this drawback of
the WKB method [5]-[9].
In this paper, we analyze the guided modes of wave-
guides with an even polynomial-profile medium. This pro-
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